

ПНЕВМАТИЧЕСКИЕ ДВУХДИАФРАГМЕННЫЕ НАСОСЫ

СОВЕРШЕНСТВО ТЕХНОЛОГИИ

С ЗАБОТОЙ ОБ ОКРУЖАЮЩЕЙ СРЕДЕ

Литье металла под давлением и отливка термопластичных материалов оптимально индустриализированы и производятся с использованием энергоэффективных и надежных ресурсов.

СОВРЕМЕННОЕ ОБОРУДОВАНИЕ

Все комплектующие мы производим на собственном производстве, используя самое современное оборудование.

КАЧЕСТВО ПРЕВЫШЕ ВСЕГО

Автоматическое измерение деталей для постоянного контроля качества.

SAMOA: ЛИДЕРСТВО ЗА СЧЕТ ИННОВАЦИЙ

SAMOA, частная компания, являющаяся ведущим европейским производителем смазочного оборудования и оборудования для работы с жидкостями. Продукты SAMOA используются для перекачки, раздачи, дозирования и извлечения различных типов жидкостей в различных отраслях и сферах применения. SAMOA разрабатывает и производит широкую линейку продукции, которая включает пневматические поршневые и двухдиафрагменные насосы, расходомеры, пистолеты для подачи, электронные компоненты для систем управления запасами, катушки для шлангов, ручные насосы и аксессуары для этих

продуктов.

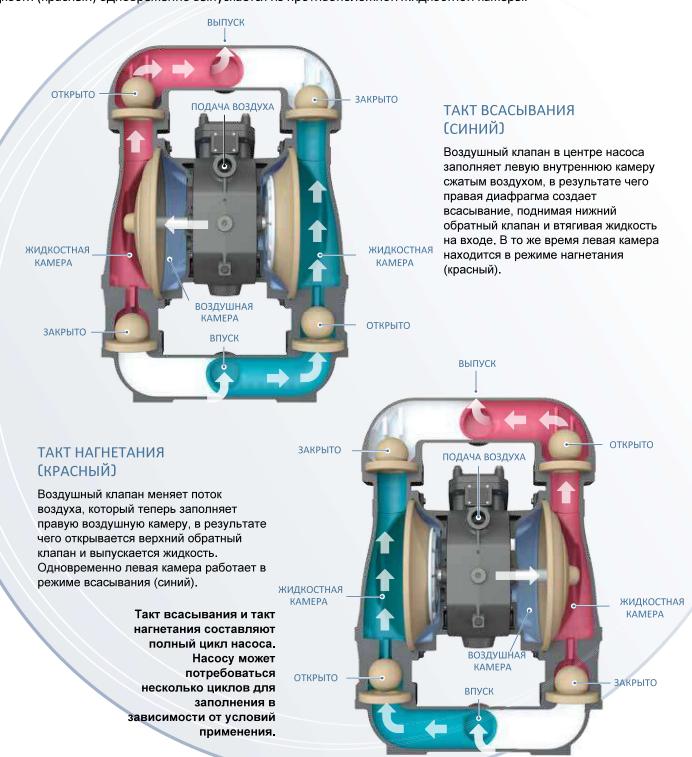
Исследования разработки продуктов являются фундаментальной частью философии SAMOA. Мы находимся в постоянном контакте с рынком, чтобы выявлять новые потребности клиентов, которые мы удовлетворяем за счет улучшения существующих продуктов и разработки новых. Штаб-квартира SAMOA находится в Хихоне, на северном побережье Испании, уже более 60 лет. Производственные SAMOA современны и оснащены новейшим мощности технологиями. производственным оборудованием И к совершенству дизайна и стремимся производства, экологической устойчивости, а также удобному и безопасному рабочему месту; наши рабочие процессы и оборудование сертифицированы по ISO 9001, ISO 14001 и ISO 45001.

Наши продукты доступны для приобретения через сеть дочерних компаний, находящихся в полной собственности, и хорошо осведомленных дистрибьюторов. Эта глобальная сеть предоставляет услуги по продажам и консультированию, чтобы определить продукты, которые наилучшим образом соответствуют потребностям каждого клиента, и, при необходимости, предлагает послепродажное обслуживание для обеспечения длительного и удовлетворительного использования нашего оборудования.

Наш непрерывный процесс совершенствования продукции гарантирует, что наши продукты соответствуют требованиям клиентов по всему миру, в том числе даже в самых требовательных областях применения и средах. В результате мы с гордостью можем сказать, что продукция SAMOA надежно работает днем и ночью в более чем 100 странах.

ВЗАИМОЗАМЕНЯЕМЫЕ детали
Последовательная сборка.

Протестировано
Все насосы проходят


проверку работы всухую, влажную, вакуумную и безнапорную.

ПНЕВМАТИЧЕСКИЕ ДВУХДИА

ПРИНЦИП РАБОТЫ ПДФ НАСОСОВ

Универсальные поворотные насосы SAMOA (Серия UP) - это пневматические двухдиафрагменные насосы с возвратно-поступательным движением. Они имеют два противоположных пространства, каждое из которых разделено диафрагмой на воздушную и жидкостную камеры. Диафрагмы соединены валом. Во время одного хода нагнетания жидкость (синяя) всасывается в одну жидкостную камеру, в то время как другой объем жидкости (красный) одновременно выпускается из противоположной жидкостной камеры.

ФРАГМЕННЫЕ (ПДД) НАСОСЫ

УСТАНОВКА ПДД НАСОСОВ

ПДД насосы подходят для широкого спектра применений: в качестве стационарных установок в технологических процессах или в качестве переносных или мобильных устройств для легкой транспортировки в различные места использования. Все ПДД насосы могут работать всухую.

1.высота всасывания

- Сухое самозаполнение.
- Максимальный подъем до 8,3 м (28 футов) (вода) с соответствующей заправочной всасывающей трубой.

2. погружение в жидкость

- Насос можно полностью погрузить в перекачиваемую жидкость.
- Выходное отверстие для выпуска воздуха должно быть выше уровня жидкости.
- Материалы центрального корпуса насоса должны быть совместимы с перекачиваемой жидкостью.

3. ЗАЛИВАЕМОЕ ВСАСЫВАНИЕ

- Самая распространенная установка.
- Подходит для вязких жидкостей.
- Давление на входе на стороне всасывания не должно превышать макс. 0,7 бар / 10 фунтов на квадратный дюйм и 7 м 21 фут водяного столба.

ПРЕИМУЩЕСТВА УНИВЕРСАЛЬНЫХ

Новый универсальный поворотный насос SAMOA (Серия UP) сочетает в себе универсальную конструкцию с уникальным работающим без трения поворотным воздушным клапаном, что обеспечивает максимальную производительность и энергоэффективность, превосходя ожидания рынка.

ПРЕИМУЩЕСТВА ПДФ НАСОСОВ

Возможность работы всухую.

Сухое самозаполнение.

Может перекачивать чистые жидкости или жидкости с взвешенными твердыми частицами.

Лучший насос для абразивных, коррозионных и чувствительных к сдвигу жидкостей.

Насос с пневмоприводом, не требует электричества, нет опасности поражения электрическим током.

Может быть полностью погружен в воду без возникновения проблем с производительностью или безопасностью. Работа по требованию. Насос останавливается при закрытии выпускного отверстия для жидкости и автоматически запускается при открытии выпускного отверстия для жидкости.

Регулируемая подача и давление нагнетания только с помощью регулятора давления воздуха. Никаких динамических механических уплотнений или прокладок.

ДОПОЛНИТЕЛЬНО НАСОСЫ СЕРИИ UP ПРЕДЛАГАЮТ:

БОЛЕЕ ВЫСОКУЮ ЭФФЕКТИВНОСТЬ: максимальный расход жидкости при меньшем расходе воздуха по сравнению с насосами конкурентов.

ПОВЫШЕННУЮ НАДЕЖНОСТЬ: отсутствие остановок, обледенения и надежный запуск даже при самом низком давлении воздуха.

МИНИМАЛЬНУЮ ВИБРАЦИЮ И ПУЛЬСАЦИЮ: Благодаря быстродействующему воздушному клапану, работающему без трения. **КОНСТРУКЦИЮ НА БОЛТАХ:** Обеспечивает лучшее уплотнение и устраняет утечки насоса. Болты одинакового размера в крышках и коллекторах для облегчения обслуживания.

УПРОЩЕННОЕ ОБСЛУЖИВАНИЕ: Компоненты, разработанные для более простого и легкого обслуживания, с уменьшенным количеством деталей.

УНИВЕРСАЛЬНЫЙ НАСОС: соответствует относительной величине основных конкурирующих брендов. Прямая замена существующих установленных насосов.

UNIVERSAL PUMP

ПРЕВОСХОДНУЮ УСТОЙЧИВОСТЬ К ИСТИРАНИЮ: коллекторы оптимизированной конструкции и пути прохождения жидкости снижают скорость жидкости и минимизируют износ, вызванный истиранием.

ПОВОРОТНЫХ НАСОСОВ

ПРЕИМУЩЕСТВА ПДД НАСОСОВ ПЕРЕД ДРУГИМИ НАСОСНЫМИ ТЕХНОЛОГИЯМИ

TU	пы	НΔ	CO	COR

	тидд	
PD	возвратно-	Г

Поршневой/ П Плунжерный І

Перистальтич. Шланговый

^{ич.} Кулачковый ій

Крыльчатый Шестерёнчатый Центробежный

m

Классификация насосов
PD = насос прямого вытеснения

PD возвратно-	
поступательного	
действия	

Ī	PD возвратно-
	поступательного
	действия

PD Роторный

PD Роторный

PD Роторный

PD Роторный Кинетический

ХАРАКТЕРИСТИКИ ПЕРЕКАЧИВАЕМОЙ ЖИДКОСТИ

ВЗВЕШЕННЫЕ ВЕЩЕСТВА Нет повреждений насоса или продукта		•	_	_		_	_
АБРАЗИВНЫЙ ШЛАМ И СУСПЕНЗИИ Низкие внутренние скорости - без повреждений		•	_	_	•	•	_
КОРРОЗИОННЫЕ ЖИДКОСТИ Совместимые материалы насоса	_	•	_		•	•	•
ЧУВСТВИТЕЛЬНОСТЬ К СДВИГУ Низкий сдвиг и разделение продукта		•	•	_	•	•	•

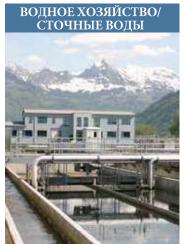
РАБОТА НАСОСА

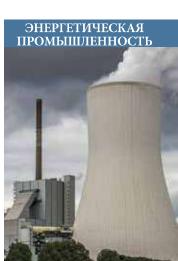
PABOTA HACUCA							
ВОЗМОЖНОСТЬ РАБОТЫ ВСУХУЮ Нет повреждения насоса или системы	_	_	_	•	_	•	•
СУХОЕ САМОЗАПОЛНЕНИЕ Высокий подъем всасывания			•	•	•	•	•
ПОРТАТИВНЫЙ И ПОГРУЖАЕМЫЙ Встроенный насос с пневмодвигателем		•	•	•	•	•	
ХОЛОДНАЯ РАБОТА Во время перекачки не нагревается			_				
БЕЗОПАСНОСТЬ (модели ATEX) С воздушным приводом, Нет опасности поражения электрическим током	_		_				

ЦЕНОВЫЕ ПРЕИМУЩЕСТВА НАСОСА

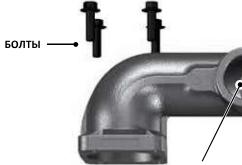
HELIODDIE III EVIIVIS EHECTDA IIAC							
РАБОТА ПО ТРЕБОВАНИЮ Экономия затрат на перепускные и предохранительные клапаны	A	_			_		
РЕГУЛИРУЕМЫЙ ПОТОК И ДАВЛЕНИЕ Доп. экономия затрат на регулирование	_	_	_	_	_	_	_
ДИНАМИЧЕСКИЕ И МЕХАНИЧ. УПЛОТНЕНИЯ Экономия затрат на замену и обслуживание		•	•	•	•	•	•
ОТСУТСТВИЕ ЭЛЕКТРИЧЕСКОЙ УСТАНОВКИ Искробезопасность, экономия затрат		•	•	•	•	•	•
НАЧАЛЬНАЯ ЦЕНА ПОКУПКИ По сравнению с другими типами насосов		•	•	•	•	•	•

📤 = Отлично


= С ограничениями


▼= Не рекомендуется

ОБЛАСТИ ПРИМЕНЕНИЯ И ОТРАСЛИ



СИСТЕМА МАРКИРОВКИ НАСОСОВ СЕРИИ UP

Пример: UP20A-BAC-HHC

СПЕЦИФИКАЦИИ ЦЕНТРАЛЬНОЙ ЧАСТИ

1 тип насоса

UP = Универсальный насос (Модель с болтовыми соединениями)

2 РАЗМЕР НАСОСА – Присоединительные патрубки (Ø)

20 - 2" (51 мм)

30 - 3" (76 мм)

3 ПНЕВМАТИЧЕСКИЙ ДВИГАТЕЛЬ И ВОЗДУШНЫЕ КАМЕРЫ

- А = Алюминий
- В = Проводящий полипропилен-АТЕХ
- L = Проводящий полипропилен-ATEX с воздушными камерами из нержавеющей стали AISI 316
- S = Алюминий с воздушными камерами из нержавеющей стали AISI 316

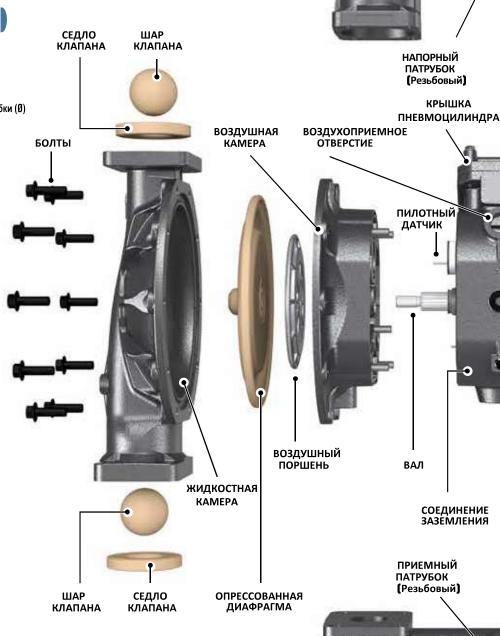
СПЕЦИФИКАЦИИ КОРПУСОВ

4 порты подключения жидкости

B = BSP (Резьбовое - Центральное расположение)

N = NPT (Резьбовое - Центральное расположение)

С = ANSI/DIN (Фланцевое - Центральное расположение)


F = ANSI/DIN (Фланцевое - Боковое расположение)

5 ЖИДКОСТНЫЕ КАМЕРЫ/МАНИФОЛЬДЫ

- А = Алюминий
- F = Пластичный чугун
- Р = Полипропилен / 1 порт
- В = Проводящий полипропилен-АТЕХ / 1 порт
- S = Нержавеющая сталь AISI 316
- W = Поливинилиденфторид / 1 порт

6 МЕТАЛЛИЧЕСКАЯ ФУРНИТУРА (БОЛТЫ)

- С = Углеродистая сталь
- S = Нержавеющая сталь

БОЛТЫ -

гибкая, модульная конструкция

СЕДЛО

болты

КЛАПАНА

ШАР

воздушная

жидкостны∕й

жидкостная

KAMEPA

СЕДЛО

КЛАПАНА

ПОРШЕНЬ

воздушный

ПОРШЕНЬ

KAMEPA

КЛАПАНА

Концепция насосов с гибкой и модульной конструкцией для самого широкого ассортимента продукции и для насосов всех размеров. Быстрая замена смачиваемых деталей (диафрагм, сёдел и шаров) делает любой насос пригодным для использования с разными жидкостями.

ПНЕВМАТИЧЕСКИЙ

пилотный

ДАТЧИК

выпуск

ВАЛ

ВОЗДУХА

ДВИГАТЕЛЬ

7 ВАРИАНТЫ МАТЕРИАЛОВ СЁДЕЛ КЛАПАНОВ

- А = Алюминий
- D = Закаленная Нержавеющая сталь AISI 440
- H = Хайтрел®
- М = Сантопрен®
- N = Бутадиен-нитрильный каучук (Buna-N)
- Р = Полипропилен
- S = Нержавеющая сталь AISI 316
- Т = ПТФЭ (Тефлон®)

8 ВАРИАНТЫ МАТЕРИАЛОВ ШАРОВ КЛАПАНОВ

- H = Хайтрел®
- М = Сантопрен®
- N = Бутадиен-нитрильный каучук (Buna-N)
- S = Нержавеющая сталь AISI 316
- $T = \Pi T \Phi \Im (Te \phi лo H^{\otimes})$
- V = Фтор-каучук (Витон®)

9 ВАРИАНТЫ МАТЕРИАЛОВ ДИАФРАГМЫ

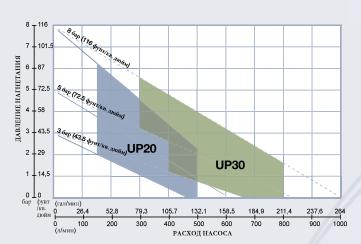
Обычная диафрагма (с открытым жидкостным поршнем)

- А = Сантопрен®
- С = Хайтрел®
- G= Бутадиен-нитрильный каучук (Buna-N)
- V = Фтор-каучук (Витон®)
- Z = ПТФЭ с обратной стороной из Сантропена®

Опрессованная цельная диафрагма (со вставленным жидкостным поршнем)

- М = Сантопрен®
- H = Хайтрел®
- T = Склеенная PTFE/EPDM
- N = Бутадиен-нитрильный каучук (Buna-N)

He все варианты материалов доступны для всех размеров насосов.

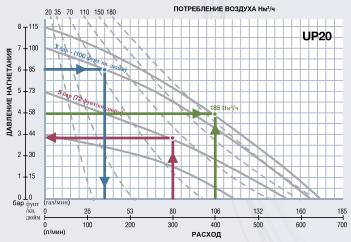


ШАР

КЛАПАНА

ВЫБОР РАЗМЕРА НАСОСА СЕРИИ UP И

РАЗМЕР НАСОСА - ХАРАКТЕРИСТИЧЕСКИЕ ДИАГРАММЫ



Требуемый расход и требуемое давление нагнетания в большинстве случаев могут быть достигнуты с помощью насосов различных размеров. Оптимальный размер достигается, когда расчетные рабочие условия насоса находятся в средней части его характеристической диаграммы. Выбор насоса большего размера приведет к меньшему времени простоя на ремонт и снижению затрат на детали, рабочую силу и электроэнергию, что снизит очевидные первоначальные вложения.

КАК ЧИТАТЬ ХАРАКТЕРИСТИЧЕСКУЮ ДИАГРАММУ НАСОСА

Характеристическая диаграмма насоса предоставляет данные о том, как конкретный насос работает в определенных условиях. Левая шкала диаграммы показывает давление нагнетания, а нижняя шкала диаграммы показывает расход. Характеристическая диаграмма также может отображать потребление воздуха насосом (пунктирная линия на графике).

Показатели на диаграмме получены при использовании воды комнатной температуры (20 °C - 70 °F).

— — — ПОТРЕБЛЕНИЕ ВОЗДУХА — РАСХОД НАСОСА

ДЛЯ ОПРЕДЕЛЕНИЯ ДАВЛЕНИЯ НАГНЕТАНИЯ НАСОСА

- 1. Найдите желаемый расход в нижней части диаграммы (300 л / мин).
- 2. Проведите вертикальную линию до пересечения с кривой производительности насоса при фиксированном давлении воздуха на входе (5 бар).
- 3. На шкале слева от этой точки прочтите значение давления нагнетания насоса (около 3 бар).

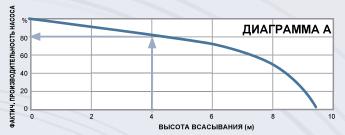
ДЛЯ ОПРЕДЕЛЕНИЯ РАСХОДА НАСОСА

- 1. Найдите необходимое значение давления нагнетания на шкале слева от графика (6 бар).
- 2. Проведите горизонтальную линию до пересечения с кривой производительности насоса при фиксированном давлении воздуха на входе (7 бар), питающего насос.
- 3. Следуйте от этой точки вниз и прочтите расход насоса (140 л / мин).
- 4. Потребление воздуха в этом случае составляет 75 Нм³/ч.

ДЛЯ ОПРЕДЕЛЕНИЯ ДАВЛЕНИЯ ВОЗДУХА НА ВХОДЕ И ПОТРЕБЛЕНИЕ ВОЗДУХА

- 1. Найдите значение желаемого расхода в нижней части диаграммы (400 л / мин) и проведите вертикальную линию вверх от этого значения.
- 2. Найдите необходимое значение давления нагнетания на шкале слева от графика (4 бар) и проведите горизонтальную линию.

UNIVERSAL PUMP


3. Пересечение этих двух линий определяет рабочую точку насоса. Давление воздуха на входе должно быть установлено на 8 бар, а расход воздуха на 185 Нм³/ч.

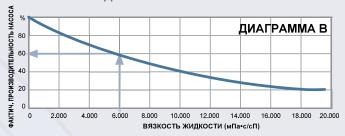
ХАРАКТЕРИСТИЧЕСКИЕ ДИАГРАММЫ

ПРОИЗВОДИТЕЛЬНОСТЬ НАСОСА, ВЫСОТА ВСАСЫВАНИЯ И ВЯЗКОСТЬ ЖИДКОСТИ.

ВЫСОТА ВСАСЫВАНИЯ

Производительность насоса уменьшается при увеличении высоты всасывания. Чтобы узнать, насколько может снизиться производительность насоса, воспользуйтесь диаграммой А.

Пример:


Теоретическая подача 300 л / мин (вода) и высота всасывания 4 м

- 1. Найдите высоту всасывания в метрах в нижней части диаграммы A (4 м).
- 2. Проведите вертикальную линию до пересечения с кривой на графике.
- 3. Следуйте от этой точки влево и прочтите фактическую производительность насоса (80%).

РАСХОД = ТЕОРЕТИЧЕСКИЙ РАСХОД X ФАКТИЧ. ПРОИЗВОДИТЕЛЬНОСТЬ/100

Расход = 300 л/мин x 0.8 = 240 л/мин

вязкость жидкости

Производительность насоса уменьшается при увеличении вязкости жидкости. Чтобы узнать, насколько может снизиться производительность насоса, воспользуйтесь диаграммой В.

Пример:

Теоретическая подача 300 л / мин (вода) и вязкость жидкости $6.000\,\mathrm{m}$ Па•с / Сп

- 1. Найдите вязкость жидкости в мПа·с/сП в нижней части диаграммы В (6.000 мПа·с).
- 2. Проведите вертикальную линию до пересечения с кривой на графике.
- 3. Следуйте от этой точки влево и прочтите фактическую производительность насоса (60%).

РАСХОД = ТЕОРЕТИЧЕСКИЙ РАСХОД Х ФАКТИЧ. ПРОИЗВОДИТЕЛЬНОСТЬ/100

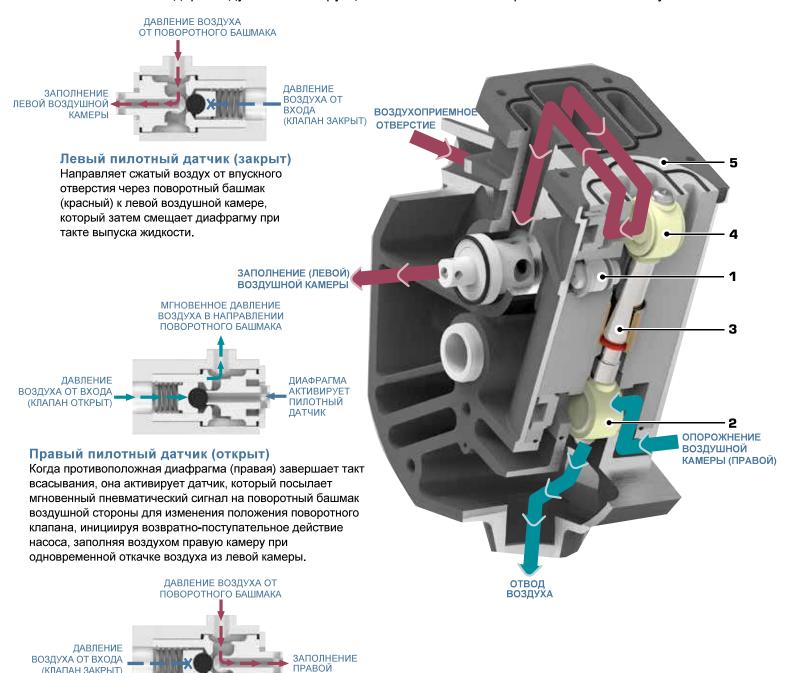
Расход = 300 л/мин х 0,6 = 180 л/мин

Уменьшение потока из-за высоты всасывания и уменьшение потока из-за вязкости накапливаются. Если вы перекачиваете жидкость с вязкостью 6000 мПа⋅с, высота всасывания установки составляет 4 м, и если теоретическая подача (вода) составляет 300 л / мин, реальная подача будет следующая:

РАСХОД = ТЕОРЕТИЧЕСКИЙ РАСХОД x ФАКТИЧ. ПРОИЗВОДИТЕЛЬНОСТЬ С УЧЕТОМ ВЫСОТЫ ВСАСЫВАНИЯ/100 x ФАКТИЧ. ПРОИЗВОДИТЕЛЬНОСТЬ С УЧЕТОМ ВЯЗКОСТИ ЖИДКОСТИ/100 Расход = 300 л/мин x 0,8 x 0,6 = 144 л/мин

Большая высота всасывания снижает производительность насоса.

Высокая вязкость жидкости снижает производительность насоса



СИСТЕМА РАСПРЕДЕЛЕНИЯ ВОЗДУХА

Универсальный поворотный насос SAMOA (Серия UP) сочетает в себе инновационную конструкцию системы распределения воздуха (центральный корпус, воздушные крышки, воздушный клапан и пилотные датчики) с усовершенствованной конструкцией универсального двухдиафрагменного насоса с пневматическим приводом.

Эксклюзивная система распределения воздуха (СРВ) включает инновационный поворотный клапан вместе с приводом с «Переключателем плавного пуска» (3S) (запатентовано). Он обеспечивает надежную работу при очень низком давлении воздуха и / или малом потоке воздуха.

Кроме того, конструкция СРВ также предотвращает замерзание и обеспечивает более высокий и плавный поток при меньшем потреблении воздуха по сравнению с другими конкурирующими ПДД насосами. Благодаря модульной конструкции СРВ Samoa очень просто чистить и обслуживать.

НАДЕЖНОСТЬ, ЭФФЕКТИВНОСТЬ И ПРОСТОТА

ВОЗДУШНОЙ

- Благодаря инновационной конструкции картриджа воздушный клапанный блок можно легко снять, очистить или заменить при необходимости, что сокращает время простоя насоса.
- Воздушный клапан имеет наименьшее количество движущихся частей в отрасли: без золотников и уплотнительных колец. Уникальный поворотный клапан без трения.
- Максимальная надежность включения-выключения-включения. Запатентованный привод с переключателем плавного пуска (3S) активирует поворотный клапан для надежного запуска систем обслуживания по требованию даже при пониженном давлении воздуха.
- Картридж воздушного клапана изготавливается из алюминия для металлических насосов и из токопроводящего полипропилена для неметаллических насосов.

РАБОТАЕТ ПРИ СУХОМ, ГРЯЗНОМ ИЛИ ВЛАЖНОМ ВОЗДУХЕ.

РАБОТА БЕЗ СМАЗКИ.

ПОВОРОТНЫЕ БАШМАКИ С ДЛИТЕЛЬНЫМ СРОКОМ СЛУЖБЫ

1. ОТСУТСТВИЕ ОСТАНОВОК НАСОСА

Насосы SAMOA серии UP не останавливаются даже при низком давлении воздуха, как это может случиться с другими насосами. Запатентованный привод с «Переключателем плавного пуска» (3S) активирует поворотный вал бесфрикционного поворотного клапана только тогда, когда это необходимо, и, таким образом, предотвращает остановку.

2. ОТСУТСТВИЕ ОБЛЕДЕНЕНИЯ НАСОСА

Благодаря поворотному валу воздух выпускается из одной воздушной камеры в атмосферу, в то время как сжатый воздух одновременно заполняет противоположную воздушную камеру. Две большие стороны вытяжного поворотного башмака действуют как клапаны быстрого сброса, вытягивая отработанный воздух из каждой камеры непосредственно через выпускное отверстие и глушитель. Это предотвращает обледенение и замедление работы насоса.

3. плавный поток

Уникальная система распределения воздуха, которая сочетает в себе два датчика конца хода, которые посылают мгновенный пневматический сигнал, и бесфрикционный поворотный клапан, обеспечивает самое быстрое возвратно-поступательное движение в отрасли по сравнению с обычными золотниковыми клапанами или запорными задвижками.

Это способствует более плавному потоку и снижению вибрации по сравнению со многими конкурирующими ПДД насосами.

4. ЭФФЕКТИВНАЯ ПЕРЕКАЧКА

Строгие допуски на обратных клапанах поворотного башмака впуска воздуха СРВ и оптимизированные пилотные датчики позволяют избежать внутренних утечек воздуха, снизить потребление воздуха и оптимизировать подачу потока по сравнению с ПДД насосами большинства конкурентов.

ПРОСТОЕ ОБСЛУЖИВАНИЕ

СРВ, используемая в универсальных поворотных насосах, имеет наименьшее количество движущихся частей в отрасли. Ее модульная и легко заменяемая конструкция способствует сокращению времени простоя и упрощает обслуживание. Модуль воздушного клапана полностью доступен и может быть заменен за считанные минуты, пока насос устанавливается в линию.

СПЕЦИФИКАЦИЯ ЦЕНТРАЛЬНОЙ ЧАСТИ

Центральная часть насоса, крышки воздушных камер, крышка пневмоцилиндра и воздушный клапан вместе с пилотными датчиками, соединительный вал диафрагм и поршни пневмоцилиндра образуют пневмодвигатель насоса.

· Вся конструкция на болтах: безопасное, надежное и прочное крепление. Простота обслуживания.

· Прочный центральный корпус и крышка пневмоцилиндра защищают воздушный клапан, действуя как щит от случайных повреждений при ударе.

· Полностью заземлен для версий ATEX.

Тщательно откалиброванные воздухоприемное отверстие, воздуховоды и клапаны пилотных датчиков предотвращают проблемы с насосом, вызванные засорением из-за плохого качества воздуха.

Большое выпускное отверстие и высокопроизводительный глушитель для предотвращения образования льда и обеспечения низкого уровня шума.

Прочный и устойчивый к коррозии вал, соединяющий диафрагмы. Концы с наружной резьбой.

МАТЕРИАЛЫ ЦЕНТРАЛЬНОЙ ЧАСТИ, КРЫШЕК ВОЗДУШНЫХ КАМЕР, КРЫШКИ ПНЕВМОЦИЛИНДРА И ПОРШНЕЙ ПНЕВМОЦИЛИНДРА

АЛЮМИНИЙ

- · Универсальный материал с хорошими общими свойствами. Для применений общего назначения.
- Повышенная коррозионная стойкость за счет нанесения уретанового эпоксидного покрытия "UE-coat" для внутренней и внешней защиты после обработки деталей.
- · Используется в центральной части, крышках воздушных камер, крышке пневмоцилиндра и поршнях пневмоцилиндра.
- · Используется в металлических насосах с крышками и коллекторами жидкостных камер из алюминия, нержавеющей стали и ковкого чугуна.

НЕРЖАВЕЮЩАЯ СТАЛЬ

- Высокая коррозионная стойкость, в основном используется в химической промышленности.
- · Нержавеющая сталь AISI 316.
- · Используется в крышках воздушных камер и поршнях пневмоцилиндра в сочетании с центральной частью из алюминия или проводящего полипропилена.
- \cdot Используется в насосах с крышками жидкостных камер и коллекторами из нержавеющей стали.

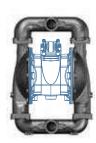
проводящий полипропилен

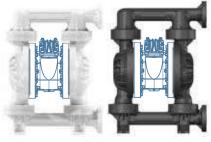
- Термопластичный материал общего назначения.
- · Обладает широкой химической совместимостью.
- · Проводящий полипропилен может быть заземлен и соответствует требованиям сертификации ATEX.
- · Используется в центральной части, крышках воздушных камер и крышке пневмоцилиндра.
- · Используется с насосами из полипропилена, проводящего полипропилена и ПВДФ.
- Центральная часть из проводящего полипропилена в сочетании с воздушными камерами и поршнями пневмоцилиндра из нержавеющей стали может использоваться в насосах с крышками и коллекторами жидкостных камер из нержавеющей стали.

PIVOT

UNIVERSAL PUMP

Проводящий полипропилен


СПЕЦИФИКАЦИЯ ЖИДКОСТНЫХ КАМЕР И КОЛЛЕКТОРОВ


РУКОВОДСТВО ПО БЫСТРОМУ ВЫБОРУ

Выбор правильных материалов насоса для вашей области применения обеспечит экономичную работу и более длительные интервалы между обслуживанием, вызванным сбоями, ремонтом, техническим обслуживанием или заменой насоса.



ическим обслуживанием заменой насоса.		МЕТАЛЛИЧ	НЕМЕТАЛЛИЧЕСКИЙ			
заменой насоса.	АЛЮМИНИЙ НЕРЖ. СТАЛЬ 316		ПЛАСТИЧНЫЙ ЧУГУН	ПОЛИПРОПИЛЕН ОБЫЧНЫЙ ПРОВОДЯЩИЙ		ПВДФ
ЦЕНА НАСОСА	\$	\$\$\$\$	\$\$	\$\$\$	\$\$\$\$	\$\$\$\$\$\$
КОРПУСЫ И ХАРАКТЕРИСТИКИ >	кидкостей					
Взвешенные твердые частицы	А	А	А	В	В	В
Не взвешенные крупные твердые частицы	С	С	С	D	D	D
Осадок/шламовая суспензия	В	В	В	С	С	С
Высокоабразивные жидкости	В	В	A	D	D	D
Среднеабразивные жидкости	Α	В	A	С	С	С
Низкоабразивные жидкости	Α	A	A	В	В	В
Коррозионные жидкости (Химреагенты)	D	В	C	Α	A	Α
КОРПУСЫ И ТИПЫ УСТАНОВ	ки					
Установка с затопленным всасыванием	А	А	A	В	В	В
Установка с приподнятым всасыванием	А	А	А	С	С	С
Установка с погружением	В	С	A	С	С	С
Большой перепад давления в линии	Α	А	A	В	В	В
Удержание жидкости (насос, прикрепляемый болтами) (Нефть и газ, краски, чернила, кислоты)	А	А	А	А	А	Α

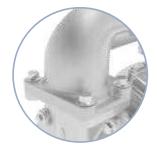
Α

R

A = отлично - B = хорошо - C = с ограничениями - D = не рекомендуется

Прерывистый / по требованию

Непрерывная работа каждый день



Α

В

- Резьбовые соединения (внутренняя резьба) для металлических насосов: Доступна резьба BSP (параллельная) и NPT (коническая).
- Фланцевые соединения ANSI / DIN для неметаллических и металлических насосов. Фланец коллектора смещен во избежание попадания возможных утечек на опорную поверхность насоса.

Α

В

Α

В

Α

В

КРЕПЕЖНЫЕ ИЗДЕЛИЯ-БОЛТЫ

 Конструкция с болтовым креплением для безопасности, надежности и простоты обслуживания.

Α

В

- Максимальное удержание технологической жидкости.
 Равномерный крутящий момент вокруг уплотнения или диафрагмы.
- Выдерживает в четыре раза большее давление по сравнению с насосами с зажимом, предотвращая утечку при высоком давлении и безвоздушном напоре.
- Нет необходимости менять уплотнение после повторного техобслуживания. Более низкая стоимость ремонта седел клапанов из эластомера.
- Болт одного размера подходит для всех деталей корпуса насоса.
- Болты доступны из углеродистой стали (пассивирована черным) или нержавеющей стали.

СПЕЦИФИКАЦИЯ ЖИДКОСТНЫХ КАМЕР

МЕТАЛЛИЧЕСКИЕ НАСОСЫ

АЛЮМИНИЕВЫЕ

- Универсальный материал с хорошими общими свойствами.
 Для универсальных применений.
- Повышенная коррозионная стойкость за счет применения уретанового эпоксидного покрытия «UE-Coat» для внутренней и внешней защиты после обработки детали.
- Крепежные болты из углеродистой стали (черные) в стандартной комплектации и из нержавеющей стали по запросу для агрессивных сред.
- Диапазон температур: от -10 °C до +130 °C (от +14 °F до +266 °F).
- Нельзя использовать с галогенированными углеводородами.

ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ AISI 316

- Высокая коррозионная стойкость, в основном используется в химической промышленности. Стандартная шероховатость поверхности, выполненной литьем под давлением.
- Высокое сопротивление растяжению.
- Может использоваться с широким спектром химических продуктов.
- Диапазон температур: от -25 °C до 130 °C (от -13 °F до 266 °F).

ИЗ ПЛАСТИЧНОГО ЧУГУНА

- Высокая стойкость к истиранию, в основном используется в горнодобывающей, целлюлозно-бумажной промышленности и с абразивными материалами.
- Высокое сопротивление растяжению.
- Диапазон температур: от -10 °C до 130 °C (от +14 °F до 266 °F).

НЕМЕТАЛЛИЧЕСКИЕ НАСОСЫ

из полипропилена (обычного или проводящего)

- Термопластичный полимер. Универсальный, недорогой материал.
- Умеренное сопротивление растяжению и прочность на изгиб.
- Обычно используется в химической, лакокрасочной, гальванической и лакокрасочной промышленности, нефтегазовой промышленности, на электростанциях и в некоторых системах водоотведения в шахтах.
- Хорошо взаимодействует с водорастворимыми кислотами и щелочами.
- Белый цвет.
- Также доступен в виде электропроводящего полипропилена (черный цвет) для версии с заземляемым насосом (АТЕХ).
 Диапазон температур: от 0 °C до 65 °C (от +32 °F до 150 °F).

ИЗ ПВДФ (поливинилиденфторид) Kynar®

- Прочный фторопласт с отличной химической стойкостью.
- Темно-серый цвет.
- Высокая прочность на растяжение и ударопрочность.
- Отличная термостойкость.
- Диапазон температур: от -40 °C до 121 °C (от -40 °F до 250 °F).

Всегда проверяйте химическую совместимость выбранных материалов.

СПЕЦИФИКАЦИЯ ПАТРУБКОВ ДЛЯ ЖИДКОСТИ

- Оптимизированный путь прохождения жидкости и поперечное сечение для минимального внутреннего трения.
- Болтовое соединение для повышения безопасности, герметичности, надежности и простоты сборки и разборки. По четыре болта на соединение.
- Выпускной и впускной патрубки можно поворачивать на 180 ° для обеспечения их соединения с впускными / выпускными линиями для жидкости.
- Разработаны таким образом, что могут подходить для замены патрубков насосов других компаний, установленных в существующих системах.
- Доступен с внутренней резьбой BSP или NPT или фланцевой муфтой DIN / ANSI в металлических насосах и фланцевой муфтой DIN / ANSI в неметаллических насосах.

Алюминий

Нержавеющая сталь AISI 316

ПВДФ (поливинилиденфторид) Kynar[®]

Всегда проверяйте химическую совместимость выбранных материалов.

МЕТАЛЛИЧЕСКИЕ ПАТРУБКИ

АЛЮМИНИЕВЫЕ

- Универсальный материал с хорошими общими свойствами. Для универсальных применений.
- Толстостенная конструкция из литого алюминия.
- Особенно подходит для абразивных суспензий, высокая пропускная способность при работе с твердыми частицами.
 Подходит для использования в керамической промышленности.
- Повышенная коррозионная стойкость за счет применения уретанового эпоксидного покрытия «UE-Coat» для внутренней и внешней защиты после обработки деталей.
- Крепежные болты из углеродистой стали (черные) в стандартной комплектации. Болты из нержавеющей стали для агрессивных сред поставляются по запросу.

ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ AISI 316

- Высокий уровень коррозионной стойкости, чаще всего используется в химической промышленности. Стандартная шероховатость поверхности, выполненной литьем под давлением.
- Высокое сопротивление растяжению.
- Крепежные болты из нержавеющей стали.

ИЗ ПЛАСТИЧНОГО ЧУГУНА

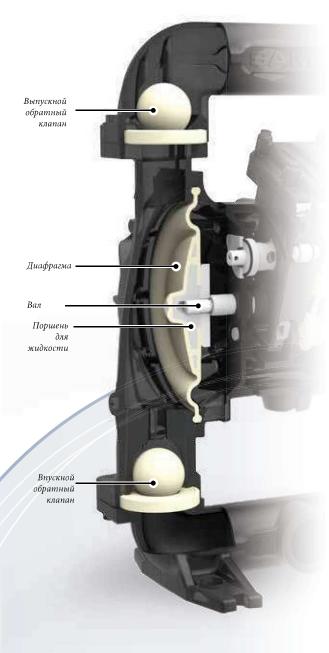
- Высокая степень абразивной стойкости, рекомендуется для осущения при осуществлении горных работ, целлюлознобумажной промышленности и с абразивными материалами.
- Высокое сопротивление растяжению.
- Крепежные болты из нержавеющей стали в стандартной комплектации.

НЕМЕТАЛЛИЧЕСКИЕ ПАТРУБКИ

- Толстостенная конструкция.
- Смещенные соединения портов патрубка. Возможные утечки не будут попадать на основание насоса.
- Болты из нержавеющей стали в стандартной комплектации.

ИЗ ПОЛИПРОПИЛЕНА (ОБЫЧНОГО ИЛИ ПРОВОДЯЩЕГО)

- Высокая коррозионная стойкость. Обычно используется в химической, лакокрасочной, гальванической и лакокрасочной промышленности, нефтегазовой промышленности, на электростанциях и в некоторых системах водоотведения в шахтах.
- Белый цвет.
- Доступен из электропроводящего полипропилена (черный цвет) для версии с заземляемым насосом (ATEX).


ИЗ ПВДФ (поливинилиденфторид) Kynar®

- Прочный фторопласт с отличной химической стойкостью.
- Темно-серый цвет.
- Высокая прочность на растяжение и ударопрочность.
- Отличная термостойкость.

СПЕЦИФИКАЦИЯ ОБРАТНЫХ КЛАПАНОВ

ДЕТАЛИ ОБРАТНОГО КЛАПАНА

Седла клапанов из эластомера не требуют уплотнительных колец для уплотнения и являются двусторонними.

Для жестких седел клапанов требуются уплотнительные кольца для герметизации клетки.

Конструкция двухдиафрагменного насоса с пневматическим приводом настолько проста, потому что он имеет всего шесть подвижных смачиваемых частей: две диафрагмы, соединенные посредством поршня для жидкости с валом возвратнопоступательного действия, два впускных обратных клапана и два выпускных обратных клапана. Действие диафрагмы заставляет шары клапана открываться и закрываться на седлах клапана, тем самым направляя поток жидкости.

Конструкция обратных клапанов облегчает обслуживание. Седла клапанов и шары клапанов в большинстве случаев подходят для всех насосов одного размера, независимо от материала патрубков и жидкостных камер. Их модульная конструкция обеспечивает полную взаимозаменяемость.

Обратные клапаны состоят из комбинации шаров клапана, седел клапана и уплотнительных колец (требуется для твердых седел клапана). Их материалы необходимо тщательно выбирать, чтобы гарантировать химическую совместимость с перекачиваемой жидкостью. Таким образом, не возникают такие проблемы, как набухание, растрескивание или заедание, и не ухудшается производительность насоса. Абразивные материалы могут изнашивать седла клапанов, увеличивая их внутренний диаметр, и шары клапана могут застревать в них. В этом случае необходимо заменить шары и седла.

Комбинация материалов обратного клапана должна отвечать одному или нескольким из следующих критериев:

- Максимальная химическая стойкость и устойчивость к агрессивным средам.
- Максимальная стойкость к истиранию.
- Хорошая стандартная стойкость.
- Более тяжелые шары клапана должны использоваться с вязкими продуктами.
- Стойкость к продуктам на нефтяной основе.
- Высокая термостойкость жидкости.

ШАРЫ КЛАПАНА

- Функция шаров клапана заключается в закрытии и открытии прохода для жидкости на седлах клапана, тем самым обеспечивая выпуск и всасывание жидкости.
- Шары клапана обычно изготавливаются из того же эластомерного материала, что и диафрагма.
- Тяжелые шары также могут быть изготовлены из нержавеющей стали для использования с вязкими жидкостями.
- Шары клапана перемещаются в сформированные клетки в жидкостных камерах и патрубках. Иногда из-за истирания эти клетки необходимо проверять, чтобы оценить чрезмерный износ или повреждение.
- Шары имеют сферическую форму, отшлифованы и хорошо сбалансированы, чтобы гарантировать хорошую производительность. Их следует регулярно проверять на предмет зазубрин, выщербин, химического воздействия или абразивного износа и, следовательно, при необходимости заменять.

СЕДЛА КЛАПАНА

- Функция седла клапана заключается в обеспечении шара клапана местом для уплотнения.
- Они могут быть изготовлены из эластомера и не требуют дополнительных уплотнительных колец для герметизации жидкости в клетке. Седла клапанов из эластомера двусторонние, что увеличивает срок их службы.
- Для жестких седел клапанов требуются дополнительные уплотнительные кольца для герметизации жидкости в клетке, и они не двусторонние.

МАТЕРИАЛЫ ОБРАТНЫХ КЛАПАНОВ

МАТЕРИАЛ ОБРАТНОГО КЛАПАНА Характеристики

Нитрил (Buna-N)	Отлично подходит для жидкостей на нефтяной основе.
СКФ (Viton®)	Отлично подходит для высокотемпературных применений. Хорошо работает с некоторыми агрессивными жидкостями. Высокая себестоимость.
Хайтрел (Hytrel®)	Отлично подходит для общего применения. Для абразивных, но неагрессивных жидкостей. Высокое сопротивление изгибу.
Сантопрен (Santoprene®)	Подходит для слабых кислот или щелочей. Для абразивных жидкостей. Для низких температур - Лучшая низкая цена.
ПТФЭ (Teflon®)	Отлично подходит для очень агрессивных жидкостей, включая сильные растворители, углеводороды, кислоты и щелочи. Высокая себестоимость.
Нерж, сталь 316	Отлично подходит для очень агрессивных жидкостей, включая сильные растворители, некоторые кислоты и щелочи. Высокая себестоимость.

ВАРИАНТЫ СЕДЕЛ

МАТЕРИАЛ СЕДЛА	Цвет	Цена	Сопрот. истиранию	Кислото- стойкость	Сопрот. едким жидкостям	Растворители (Кетон/ Ацетаты)	Углеводороды (Ароматические / хлорированные вещества)	Нефтепродукты
Нитрил (Buna-N)*	Черный	\$\$	В	D	С	С	С	А
Хайтрел (Hytrel®*)	Кремовый	\$\$	A	С	С	В	С	А
Сантопрен (Santoprene®*)	Рыжевато- коричневый	\$	А	В	В	В	D	D
Полипропилен**	Белый	\$	С	Α	А	В	D	D
ПТФЭ (Teflon®)**	Белый	\$\$\$\$	С	А	Α	А	А	А
Алюминий**	Металлик	\$\$\$	В	F	F	Α	F	А
Нерж. сталь 316**	Металлик	\$\$\$\$	С	В	В	Α	А	А
Нерж. сталь 440** Закаленная (по запросу)	Металлик	\$\$\$\$\$	A	С	С	В	В	А

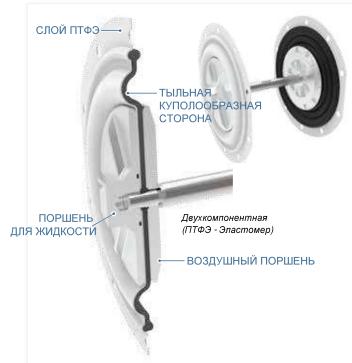
A = отлично - B = хорошо - C = удовлетворительно - D = плохо - F = не рекомендуется.

ВАРИАНТЫ ШАРОВ

МАТЕРИАЛ ШАРА	Цвет	Цена	Сопрот. истиранию	Кислото- стойкость	Сопрот. едким жидкостям	Растворители (Кетон/ Ацетаты)	Углеводороды (Ароматические / хлорированные вещества)	Нефтепродукты
Нитрил (Buna-N)	Черный	\$\$	В	F	F	С	С	A
СКФ (Viton®)	Черный+Желтый	\$\$\$\$\$	В	А	Α	D	Α	A
Хайтрел (Hytrel®)	Кремовый	\$\$	А	D	D	В	С	A
Сантопрен (Santoprene®)	Рыжевато- коричневый	\$\$	А	В	В	В	D	D
ПТФЭ (Teflon®)	Белый	\$\$\$\$	С	А	Α	Α	А	А
Нерж. сталь 316	Металлик	\$\$\$\$\$	А	В	В	Α	А	А

A = отлично - B = хорошо - C = удовлетворительно - D = плохо - F = не рекомендуется.

Всегда проверяйте химическую совместимость выбранных материалов.



^{*:} Седла клапана мягкого типа (эластомерные) не требуют дополнительных

[«]уплотнительных колец» - двусторонняя конструкция.
**: Седла клапана жесткого типа требуют правильно подобранных уплотнительных колец для обеспечения герметичности между седлом и корпусом. Уплотнительные кольца седла клапана доступны из нитрила, этилен-пропиленового каучука, СКФ (Viton®) и ПТФЭ (Teflon®).

СПЕЦИФИКАЦИЯ ДИАФРАГМЫ

ДВУХКОМПОНЕНТНАЯ (ПТФЭ-ЭЛАСТОМЕР) ДИАФРАГМА

- Ламинированный слой ПТФЭ для использования с агрессивными химикатами.
- Конструкция ПТФЭ слоя и свойства материала обеспечивают превосходное сопротивление изгибу.
- Конструкция в форме кольцевого свода в диафрагме и подложке из термопластичного эластомера для дополнительной поддержки.
- Увеличивает срок службы диафрагмы.
- Открытый поршень для жидкости, стандартная конструкция

СТАНДАРТНЫЙ ТИП ДИАФРАГМЫ ИЗ ТПЭ ИЛИ РЕЗИНЫ

- Форма кольцевого свода продлевает срок службы диафрагмы.
- Низкое пусковое давление.
- Открытый поршень для жидкости, стандартная конструкция.
- Доступно исполнение из термопластичных эластомеров Хайтрел® и Сантопрен® (ТПЭ).
- Доступно исполнение из бутадиеннитрильного каучука (Buna-N) и СКФ (Viton®).

КОНСТРУКЦИЯ КОЛЬЦЕВОГО СВОДА

При равномерном применении выдерживает высокие нагрузки.

ПЕРЕФОРМОВАННАЯ ДИАФРАГМА

Цельные диафрагмы обладают следующими преимуществами:

- Безопасность: отсутствие открытого поршня для улавливания частиц, которые могут вызвать износ диафрагмы. Минимальный риск загрязнения продукта.
- Чистота: ровные контуры. Нет открытого поршня.
- Долговечность: отличное сопротивление изгибу.
- Нет необходимости в центральном отверстии и крутящем моменте.
 Отсутствие утечек.
- Быстрая, безопасная и простая замена диафрагмы.

ПЕРЕФОРМОВАННЫЕ ДИАФРАГМЫ ПТФЭ-РЕЗИНА

- Вставной поршень покрыт термореактивным каучуком (EPDM).
- Конструкция в форме купола с дополнительными концентрическими ребрами, обеспечивающими дополнительную поддержку при каждом изгибе диафрагмы.
- Склеенный слой ПТФЭ, контактирующий с перекачиваемой жидкостью, для перекачивания агрессивных химикатов.
- Диапазон температур: от -5 ° C до +130 ° C.

ПЕРЕФОРМОВАННЫЕ ДИАФРАГМЫ ИЗ ТПЭ

- Вставной поршень покрыт термопластичным эластомером (ТПЭ).
- Форма кольцевого свода продлевает срок службы диафрагмы.
- Увеличенный срок службы всасывания и увеличенный расход (по сравнению с двухкомпонентными стандартными диафрагмами из ПТФЭэластомера).
- Долговечность: отличное сопротивление изгибу, термостойкость
- Доступна в исполнении из Хайтрел® и Сантопрен®.

ПЕРЕФОРМОВАННЫЕ ДИАФРАГМЫ ИЗ РЕЗИНЫ

- Вставной поршень покрыт термореактивной резиной.
- Куполообразная форма с дополнительными концентрическими ребрами, обеспечивающими дополнительную поддержку при каждом изгибе диафрагмы.
- Универсальные материалы общего назначения.
- Доступна в исполнении из бутадиеннитрильного каучука (Buna-N).

МАТЕРИАЛЫ ДИАФРАГМ

МАТЕРИАЛ	Характеристики
Нитрил (Buna-N)	Отлично подходит для жидкостей на нефтяной основе.
СКФ (Viton®)	Отлично подходит для высокотемпературных применений. Хорошо работает с некоторыми агрессивными жидкостями. Высокая себестоимость.
Хайтрел (Hytrel®)	Отлично подходит для универсальной перекачки. Идеально подходит для абразивных и некоррозионных жидкостей. Обеспечивает отличное сопротивление изгибу.
Сантопрен (Santoprene®)	Хорошо подходит для слабых кислот или щелочей. Хорошая стойкость к истиранию и более широкая химическая совместимость. Обеспечивает длительный срок службы при изгибе. Хороший выбор для низкотемпературных применений. Самый экономичный материал диафрагмы.
ПТФЭ (Teflon®)	Отлично подходит для очень агрессивных жидкостей, включая сильные растворители, кислоты, щелочи. Высокая себестоимость.

ВАРИАНТЫ ИСПОЛНЕНИЯ ДИАФРАГМ

МАТЕРИАЛ ДИАФРАГМЫ	Цвет	Цена	Сопрот. изгибу	Сопрот. истиранию	Химич. устойч.	Термо- стойкость	Температурные пределы* ° С	Температурные пределы* °F
Нитрил (Buna-N)	Черный	\$\$\$	A-	В	С	С	-23°/+82°	-10°/+180°
СКФ (Viton®)	Черный	\$\$\$\$\$	A	С	А	A+	-40°/+177°	-40°/+350°
Хайтрел (Hytrel®)	Кремвый	\$\$	А	A+	С	В	-29°/+104°	-20°/+220°
Сантопрен (Santoprene®)	Рыжевато- коричневый	\$	A+	A+	В	A+	-40°/+135°	-40°/+275°
ПТФЭ/Сантопрен® (тыльная сторона)	Белый/Зеленый	\$\$\$\$	С	F	A+	А	-20°/+107°	-4°/+225°
ПТФЭ/ Этилен-пропиленовый каучук (Склеенная)	Синий/Черный	\$\$\$\$\$	В	F	A+	A+	-10°/+107°	-4°/+225°

A = отлично, B = хорошо, C = удовлетворительно, D = плохо, F = не рекомендуется. (*) Максимальные пределы температуры основаны только на устойчивости к механическим воздействиям. Некоторые химические вещества могут значительно снизить максимальные пределы температуры.

КОНСТРУКЦИЯ ДИАФРАГМЫ

		-	тип жид	кости		МОН	ІТАЖ	ТРЕБУЕМЫЙ РЕЖИМ РАБОТЫ		ОБСЛУЖИВАНИЕ	
КОНСТРУКЦИЯ ДИАФРАГМЫ	Вода	С твердыми частицами	Абразивная	Высокая вязкость	Стандартная жидкость	С давлением на входе	Приподнятое всасывание	Прерывистый	Непрерывный	Техническое обслуживание	
Стандартная (ТПЭ)	А	А	А	В	А	А	А	А	А	B+	
Двухкомпонентная (ПТФЭ/Сантопрен [®])	Α	B+	С	В	А	А	B+	А	B+	B+	
Переформованная (ТПЭ)	A+	A+	A+	A+	A+	A+	Α	A+	A+	A+	
Переформованная (Резина)	A+	А	В	A+	A+	A+	A+	A+	A+	A+	
Переформованная (ПТФЭ/ этилен-пропиленовый каучук)	A+	A+	C+	A+	A+	A+	Α	A+	A+	A+	

A = отлично, B = хорошо, C = удовлетворительно.

Обратите внимание, что чрезмерное давление на входе или чрезмерная высота всасывания могут сократить срок службы диафрагмы.

Всегда проверяйте химическую совместимость выбранных материалов.

2" МЕТАЛИЧЕСКИЕ НАСОСЫ

Пневматические двухдиафрагменные насосы диаметром 2 дюйма (51 мм), изготовленные из литого металла, могут достигать расхода до 650 л / мин (172 галлона / мин), и они предлагают широкий выбор конструкционных материалов и конфигураций отверстий. Конструкция насоса обеспечивает высокую стойкость к истиранию при перекачивании абразивных сред и низкое гидравлическое сопротивление.

В стандартной комплектации входные и выходные отверстия расположены напротив друг друга. Выпускной и впускной патрубки могут поворачиваться на 180 ° для максимальной универсальности установки насоса. Эти насосы часто используются для перекачки, наполнения, рециркуляции и дозирования в различных отраслях промышленности.

СИСТЕМА ОБОЗНАЧЕНИЙ НАСОСА

ОСНОВНЫЕ ОБЛАСТИ ПРИМЕНЕНИЯ

- КЕРАМИКА И ФАРФОР
- ЛАКОКРАСОЧНАЯ
- ПРОМЫШЛЕННОСТЬ
- НЕФТЬ И ГАЗ / НЕФТЕХИМИЯ
- СТОЧНЫЕ ВОДЫ / ОЧИСТКА ВОДЫ
- СУДОСТРОЕНИЕ
- ФИЛЬТРАЦИЯ ПОД ДАВЛЕНИЕМ
- ГОРНОЕ ДЕЛО И СТРОИТЕЛЬСТВО
- ХИМИЯ / ОБАБОТКА
 ЦЕЛЛЮЛОЗНО-БУМАЖНАЯ
 ПРОМЫШЛЕННОСТЬ /
 ПРОИЗВОДСТВО КАРТОНА

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ МЕТАЛИЧЕСКИЕ НАСОСЫ UP20

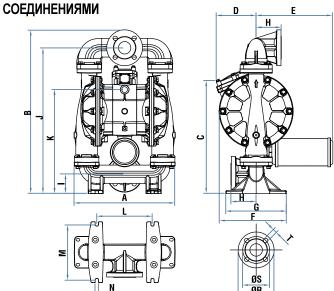
TEXTINITECRNIE ARPARTEFUCTVIRVI	MILTATIVI TECRVIL TIACOCDI OF 20
Коэффициент сжатия	1:1
Макс. свободная подача	650 л/мин (172 гал/мин)
Диапазон давления воздуха	от 1,5 до 8 бар (от 20 до 120 фунт/кв. дюйм)
Взвешенные твердые частицы, максимальный размер	6,4 мм (1/4")
Макс. подъем сухого всасывания	5 m (16')
Макс. подъем влажного всасывания	8 m (26')
Вытесняемый объем за цикл*	5,1 л (1.35 гал)
Впускные/выпускные соединения для жидкости (Внутр. резьба) (Внутр. резьба)	2" NPT (F) Резьбовое 2" BSP (F) Резьбовое 2" ANSI/DIN Фланцевое
Впускное соед. для (Внутр. резьба) воздуха (Внутр. резьба)	3/4" BSP (F) 3/4" NPT (F)
Выпускное соединение для воздуха (Внутр, резьба)	1 1/2" NPT (F)
Уровень шума	85 дБ (А) при 50 циклах/мин при 70 фунтах/кв. дюйм
Вес (алюминиевая модель)	46 кг (101 фунт)
Вес (модель из пластичн. чугуна)	74 кг (163 фунта)
Вес (модель из нерж. стали)	76 кг (168 фунтов)

^{*} Подача за цикл зависит от материала диафрагмы, давления воздуха на входе и вязкости жидкости.

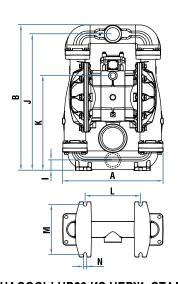
UX2	OX		ХХХ		ХХХ				
ТИП НАСОСА	ВОЗДУШНАЯ ЧАСТЬ		КОРПУСЫ		СМА	СМАЧИВАЕМЫЕ ДЕТАЛИ			
1 Тип насоса и размер	2 Центральная часть и воздушные камеры	3 Соединения для жидкости / расположение	4 Жидкостные камеры и патрубки	5 Крепежные изделия Болты	6 Седла клапанов	7 Шары клапанов	8 Тип и материал диафрагмы		
UP20 Универсальный насос (Болтовое крепление)	L*= Проводящий полипропилен с воздушными	В = 2" BSP резьбовые соединения / Центральное горизонтальное С = 2" ANSI/ DIN фланцевые соединения / Центральное горизонтальное N = 2" NPTF резьбовые соединения / Центральное горизонтальное горизонтальное	Сертифицировано АТЕХ А*= Алюминий F*= Пластичный чугун S*= Нерж. сталь	э = перж. сталь	 A = Алюминий D = Закаленная нерж. сталь AISI 440 H = Хайтрел® M = Сантопрен® N = Нитрил (Buna-N) S = Нерж. сталь AISI 316 T = ПТФЭ (Тефлон®) 	Н = Хайтрел [®] М = Сантопрен [®] N = Нитрил (Ви- па-N) S = Нерж. сталь AISI 316 T = ПТФЭ (Тефлон [®] V = СКФ (Витон [®]			

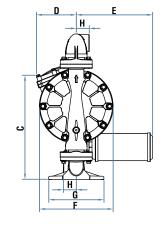
^{* 🚱} Насосы, сертифицированные АТЕХ, могут использоваться во взрывоопасных зонах, АТЕХ Group II 2GDx.

Хайтрел® является зарегистрированным товарным знаком компании DuPont, Bumon® и Тефлон® - компании Chemours и Caнтопрен® - компании Monsanto, лицензированные для Передовых систем эластомеров (Advanced Elastomer Systems), L.P. Купаг® является зарегистрированным товарным знаком Arkema, Inc.

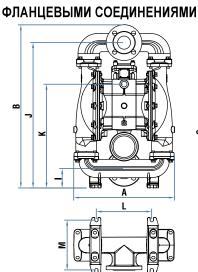


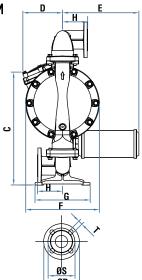
Пример: UP20A-BSS-TTZ

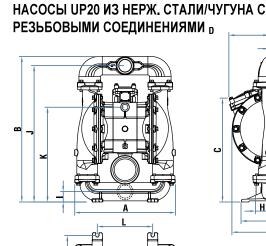


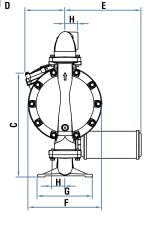

2" (51 мм) МЕТАЛЛИЧЕСКИЕ НАСОСЫ: РАЗМЕРЫ И ГРАФИКИ РАБОЧИХ ХАРАКТЕРИСТИК

АЛЮМИНИЕВЫЕ НАСОСЫ UP20 С ФЛАНЦЕВЫМИ




АЛЮМИНИЕВЫЕ НАСОСЫ UP20 С РЕЗЬБОВЫМИ СОЕДИНЕНИЯМИ





НАСОСЫ UP20 ИЗ НЕРЖ. СТАЛИ/ЧУГУНА С

6 1/2

4 3/4-4 59/64

3/4"

РАЗМЕРЫ (мм)
НАСОС UP20 ФЛАНЕЦ
HACOC UP20 PE3ЬБА

•••	_	•	_	_	•	•	• • • • • • • • • • • • • • • • • • • •	•	•	•••	_	•••	•••	•••	•	•
465	754	251	184	353	340	255	116	89	671	479	256	230	15	165	120,6-125	19
465	672	480	184	353	340	255	60	48	630	438	256	230	15	-	-	-
۸	R	r	n	E	E	G	ш			K		M	N	D	9	т

РАЗМЕРЫ (дюймы) НАСОС UP20 ФЛАНЕЦ НАСОС UP20 РЕЗЬБА

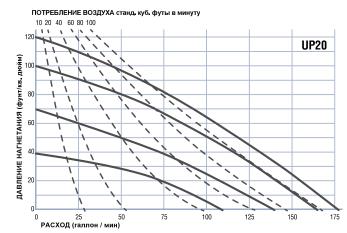
А	В	L	ט	E	Г	u	н	- 1	J	ĸ	L	IVI	N	
18 5/16	29 11/16	9 7/8	7 1/4	13 57/64	13 25/64	10 3/64	4 9/16	3 1/2	26 27/64	18 55/64	10 5/64	9 1/16	19/32	
18 5/16	26 29/64	18 57/64	7 1/4	13 57/64	13 25/64	10 3/64	2 23/64	1 57/64	24 51/64	17 1/4	10 5/64	9 1/16	19/32	

ПОТРЕБЛЕНИЕ ВОЗДУХА Нм²/ч
20 35 70 110 150 180

8,00

7,00

1,00


1,00

РАСХОД (л/мин)

R

C

n

. Графики рабочих характеристик составлены с использованием воды комнатной температуры (20 ° C - 70 ° F

2" НЕМЕТАЛИЧЕСКИЕ НАСОСЫ

Пневматические диафрагменные насосы диаметром 2 дюйма (51 мм), изготовленные из литых пластиковых деталей, могут достигать расхода до 650 л / мин (172 галлона / мин). Они доступны в исполнении из обычного или проводящего полипропилена и ПВДФ для оптимальной совместимости с жидкостями и устойчивости к коррозии.

Входные и выходные соединения смещены вбок, чтобы избежать возможной утечки материала на основание насоса. Выпускной и впускной патрубки могут поворачиваться на 180° для максимальной универсальности установки насоса. Соединения с фланцами и болтами соответствуют стандартам DIN и ANSI. Эти насосы используются для перекачки, наполнения и дозирования в различных отраслях промышленности.

Недоговорные изображения

ОСНОВНЫЕ ОБЛАСТИ ПРИМЕНЕНИЯ

- НЕФТЬ И ГАЗ / НЕФТЕХИМИЯ • ЛАКОКРАСОЧНАЯ
- ЛАКОКРАСОЧНАЯ ПРОМЫШЛЕННОСТЬ
- ХИМИЧЕСКАЯ ПЕРЕРАБОТКА • СТОЧНЫЕ ВОДЫ / ОЧИСТКА
- ФИЛЬТРАЦИЯ ПОД ДАВЛЕНИЕМ (ВОДООТВЕДЕНИЕ)
- ПРОИЗВОДСТВЕННОЕ ОБОРУДОВАНИЕ И МАШИНОСТРОЕНИЕ
- ЦЕЛЛЮЛОЗНО-БУМАЖНАЯ ПРОМЫШЛЕННОСТЬ / ПРОИЗВОДСТВО КАРТОНА
- ЭЛЕКТРОСТАНЦИИ (ЭНЕРГИЯ)
- ПАРКИ РЕЗЕРВУАРОВ / ПЕРЕКАЧКА

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НЕМЕТАЛИЧЕСКИЕ НАСОСЫ UP20

Коэффициент сжатия	1:1
Макс. свободная подача	650 л/мин (172 гал/мин)
Диапазон давления воздуха	от 1,5 до 8 бар (от 20 до 120 фунтов/кв. дюйм)
Взвешенные твердые частицы, максимальный размер	6,4 мм (1/4")
Макс. подъем сухого всасывания	5 м (16')
Макс. подъем влажного всасывания	8 м (26')
Вытесняемый объем за цикл*	5,1 л (1.35 гал)
Впускные/выпускные соединения для жидкости (Фланцевые)	2"ANSI/DIN. Боковые концы.
Впускное соед. для (Внутр. резьба) воздуха (Внутр. резьба)	3/4" BSP (F) 3/4" NPT (F)
Выпускное соединение для воздуха (Внутр. резьба)	1 1/2" NPT (F)
Уровень шума	85 дБ (А) при 50 циклах/мин при 70 фунтах/кв. дюйм
Вес (пластиковая модель)	28 кг (62 фунта)

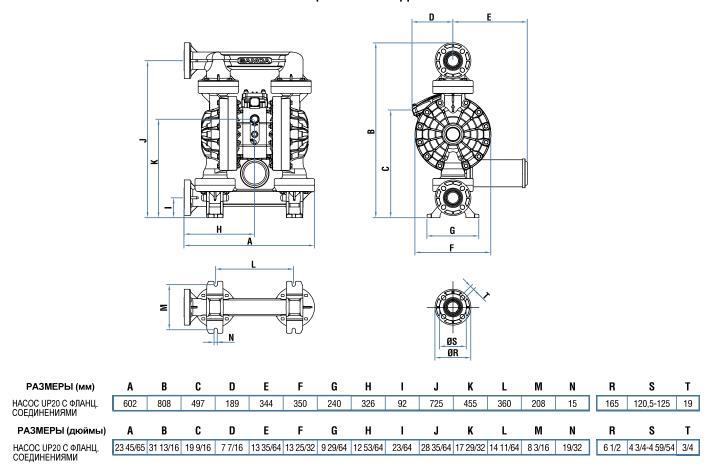
^{*} Подача за цикл зависит от материала диафрагмы, давления воздуха на входе и вязкости жидкости.

СИСТЕМА ОБОЗНАЧЕНИЙ НАСОСА

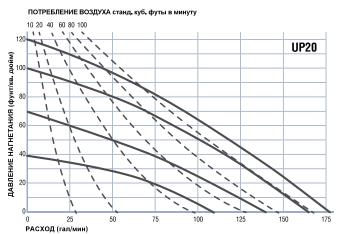
Пример: **UP20B-FPS-PMA**

UX2	OX		XXX		ХХХ					
TUIT HACOCA	воздушн, 2	3	3 4 5			СМАЧИВАЕМЫЕ ДЕТАЛИ 6 7 8 6 7 100				
Тип и размер насоса	Центральная часть и воздушные камеры	Соединения для жидкости / расположение	Жидкостные камеры и патрубки	Крепежные изделия Болты	Седла клапанов	Шары клапанов	Тип и материал диафрагмы			
UP20 Универсальный насос (Болтовое крепление)	ЕУСерт. АТЕХ В*= Проводящий Полипропилен (черный)	F = 2" ANSI/DIN Фланцевые соединения / Боковые концы	Р = Полипропилен (белый) W = ПВДФ (Купаг®) (графит) €≾Серт. АТЕХ В*= Проводящий Полипропилен (черный)	S = Нерж, сталь	Р = Полипропилен Т = ПТФЭ (Тефлон®)	Н = Хайтрел [®] М = Сантопрен [®] N = Нитрил (Випа-N) Т = ПТФЭ(Тефлон [®]) V = СКФ (Витон [®])	Стандартная А = Сантопрен® С = Хайтрел® G = Нитрил (Випа-N) V = СКФ (Витон®) Двухкомпонентная Z = ПТФЭ (Тефлон® с обратной стороной из Сантопрена N = Нитрил (Випа N) H = Хайтрел® M = Сантопрен® T = ПТФЭ / этилен- пропиленовый каучук (Килеенная)			

^{* 🕃} Насосы, сертифицированные АТЕХ, могут использоваться во взрывоопасных зонах, АТЕХ Group II 2GDx.


Хайтрел® является зарегистрированным товарным знаком компании DuPont, Burnoh® и Тефлон® - компании Chemours и Caнтопрен® - компании Monsanto, лицензированные для Передовых систем эластомеров (Advanced Elastomer Systems), L.P. Купаr® является зарегистрированным товарным знаком Arkema, Inc.





2" (51 мм) НЕМЕТАЛЛИЧЕСКИЕ НАСОСЫ: РАЗМЕРЫ И ГРАФИКИ РАБОЧИХ ХАРАКТЕРИСТИК

НЕМЕТАЛЛИЧЕСКИЕ НАСОСЫ UP20 С ФЛАНЦЕВЫМИ СОЕДИНЕНИЯМИ

Графики рабочих характеристик составлены с использованием воды комнатной температуры (20 ° C - 70 ° F)

3" МЕТАЛЛИЧЕСКИЕ НАСОСЫ

Пневматические двухдиафрагменные насосы диаметром 3 дюйма (76 мм), изготовленные из литого металла, могут достигать расхода до 1.000 л / мин (264 галлона / мин), и они предлагают широкий выбор конструкционных материалов и конфигураций отверстий. Конструкция насоса обеспечивает высокую устойчивость к истиранию при перекачивании абразивных сред и низкое гидравлическое сопротивление.

В стандартной комплектации входные и выходные отверстия расположены напротив друг друга. Выпускной и впускной патрубки могут поворачиваться на 180 ° для максимальной универсальности установки насоса. Эти насосы часто используются для перекачки, наполнения и дозирования в различных отраслях промышленности.

ОСНОВНЫЕ ОБЛАСТИ ПРИМЕНЕНИЯ

- КЕРАМИКА И ФАРФОР
- ЛАКОКРАСОЧНАЯ ПРОМЫШЛЕННОСТЬ
- НЕФТЬ И ГАЗ / НЕФТЕХИМИЯ
- СТОЧНЫЕ ВОДЫ / ОЧИСТКА воды
- СУДОСТРОЕНИЕ
- ФИЛЬТРАЦИЯ ПОД ДАВЛЕНИЕМ
- ГОРНОЕ ДЕЛО И
- СТРОИТЕЛЬСИ

 ХИМИЯ / ОБРАБОТКА

 ЦЕЛЛЮЛОЗНО-БУМАЖНАЯ
 ПРОМЫШЛЕННОСТЬ / ПРОИЗВОДСТВО КАРТОНА

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ **МЕТАЛИЧЕСКИЕ НАСОСЫ UP30**

Коэффициент сжатия	1:1
Макс. свободная подача	1.000 л/мин (264 гал/мин)
Диапазон давления воздуха	от 1,5 до 8 бар (от 20 до 120 фунтов/кв.дюйм)
Взвешенные твердые частицы, максимальный размер	12,7 мм (1/2")
Макс, подъем сухого всасывания	6 м (19.7')
Макс. подъем влажного всасывания	8 м (26.2')
Вытесняемый объем за цикл*	10,2 л (2.6 гал)
Впускные/выпускные соединения для жидкости (Внутр. резьба) (Внутр. резьба)	3" NPT (F) Резьбовое 3" BSP (F) Резьбовое 3" ANSI/DIN Фланцевое
Впускное соед. для (Внутр. резьба) воздуха (Внутр. резьба)	3/4" BSP (F) 3/4" NPT (F)
Выпускное соединение для воздуха (Внутр, резьба)	1 1/2" NPT (F)
Уровень шума	83 дБ (А) при 50 циклах/мин при 70 фунтах/кв,дюйм
Вес (алюминиевая модель)	68 кг (150 фунтов)
Вес (модель из нерж. стали)	120 кг (270 фунтов)

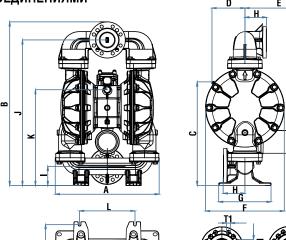
^{*} Подача за цикл зависит от материала диафрагмы, давления воздуха на входе и

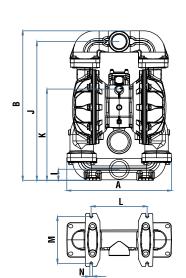
СИСТЕМА ОБОЗНАЧЕНИЙ НАСОСА

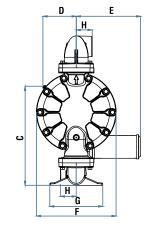
Пример: UP30A-BAC-NNG

UX3	OX		ХХХ		ХХХ				
ТИП НАСОСА	ВОЗДУШНАЯ ЧАСТЬ		КОРПУСЫ		СМАЧИВАЕМЫЕ ДЕТАЛИ				
1 Тип и размер насоса	2 Центральная часть и воздушные камеры	З Соединения для жидкости / расположение	4 Жидкостные камеры и патрубки	5 Крепежные изделия Болты	6 СЕДЛА КЛАПАНОВ	7 ШАРЫ КЛАПАНОВ	8 Тип и материал диафрагмы		
UP30 Универсальный насос (Болтовое крепление)	Ехсерт. АТЕХ A *= Алюминий	В = 3" BSP резьб. соед / Центральное горизонтальное С = 3" ANSI/DIN фланц. соед / Центральное горизонтальное N = 3" NPTF резьб. соед / Центральное горизонтальное горизонтальное	ЕхСерт. АТЕХ A* = Алюминий S* = Нерж. сталь	С = Углер. сталь S = Нерж. сталь	А = Алюминий В = Закаленная Нерж, сталь AISI 440 Н = Хайтрел® М = Сантопрен® № = Нитрил (Випа-N) S = Нерж, сталь AISI 316 Т = ПТФЭ(Тефлон®)	Н = Хайтрел® М = Сантопрен® № = Нитрил (Випа-N) \$ = Нерж. сталь 316 Т = ПТФЭ(Тефлон®) V = СКФ (Витон®)	Стандартная A = Сантопрен® C = Хайтрел® G = Нитрил (Вила-N) V = СКФ (Витон®) Двухкомпонентная Z = ПТФЭ(Тефлон® собратной из Сантопрена)		

[🥳] Насосы, сертифицированные АТЕХ, могут использоваться во взрывоопасных зонах, АТЕХ Group II 2GDx.

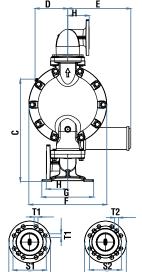

Хайтрел® является зарегистрированным товарным знаком компании DuPont, Burnoн® и Тефлон® - компании Chemours и Сантопрен® - компании Monsanto, лицензированные для Передовых систем эластомеров (Advanced Elastomer Systems), L.P. Купаr® является зарегистрированным товарным знаком Arkema, Inc.



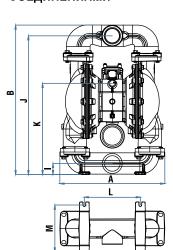

3" (76 мм) МЕТАЛЛИЧЕСКИЕ НАСОСЫ: РАЗМЕРЫ И ГРАФИКИ РАБОЧИХ ХАРАКТЕРИСТИК

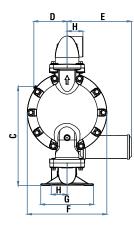
АЛЮМИНИЕВЫЕ НАСОСЫ UP30 С ФЛАНЦЕВЫМИ СОЕДИНЕНИЯМИ

АЛЮМИНИЕВЫЕ НАСОСЫ UP30 С РЕЗЬБОВЫМИ СОЕДИНЕНИЯМИ


НАСОСЫ UP30 ИЗ НЕРЖ, СТАЛИ С ФЛАНЦЕВЫМИ

СОЕДИНЕНИЯМИ

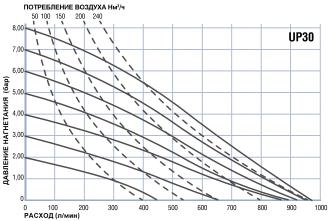

A


В

C

НАСОСЫ UP30 ИЗ НЕРЖ, СТАЛИ С РЕЗЬБОВЫМИ СОЕДИНЕНИЯМИ

РАЗМЕРЫ (ММ)
НАСОС UP30 ФЛАНЕЦ
HACOC UP30 PE3b5A


А	В	С	D	Е	F	G	Н	1	J	К	ı	
575	820	543	184	353	436	290	87	61	761	500	307	
575	905	573	184	353	436	290	120	105	805	530	307	

	R	S1 (DIN)	S2 (ANSI)	IT (DIN)	T2 (ANSI)
	200	160	152,5	18	19
	-	-	-	-	-

РАЗМЕРЫ (дюймы) HACOC UP30 PE3b5A

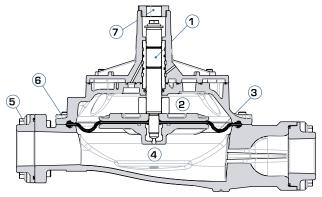
НАСОС UP30 ФЛАНЕЦ 21 105/64 35 5/8 22 9/16 7 1/4 13 57/64 17 11/64 11 27/64 4 47/64 4 5/32 31 45/64 20 14/16 12 3/32 10 1/8 19/32 21 105/64 32 9/32 21 25/64 7 1/4 13 57/64 17 11/64 11 27/64 3 7/16 2 13/32 29 31/32 19 11/16 12 3/32 10 1/8 19/32

R	S1 (DIN)	S2 (ANSI)	T1 (DIN)	T2 (ANSI)	
7 7/8	6 5/16	6	23/32	3/4	
-	-	-	-	-	

М 257 15

257 15

Графики рабочих характеристик составлены с использованием воды комнатной температуры (20 ° C - 70 ° F)



АКТИВНЫЕ ДЕМПФЕРЫ ПУЛЬСАЦИЙ

Пневматические двухдиафрагменные насосы имеют, по крайней мере, две точки в цикле, когда не подается давление и поток в систему. Это вызывает колебания давления и пульсации потока. Активный демпфер пульсаций, установленный на выходе насоса, сводит к минимуму колебания давления на выпускном конце, обеспечивая постоянный ламинарный поток. Активный демпфер пульсации имеет воздушную камеру, соединенную с сжатым воздухом, который поддерживает постоянное давление в диафрагме, которая разделяет демпфер на воздушную и жидкостную камеры. Когда насос начинает такт нагнетания, давление в линии увеличивается и диафрагма изгибается внутрь, накапливая жидкость в камере для жидкости. Когда насос завершает такт и перенаправляет свое движение, давление на выходе насоса уменьшается, и сжатый воздух в воздушной камере изгибает диафрагму наружу, вытесняя накопившуюся жидкость в нагнетательную линию.

Размер демпфера и его материалы (камер и диафрагмы) следует выбирать таким образом, чтобы они были совместимы с соответствующим насосом.

АКТИВНЫЙ ДЕМПФЕР ПУЛЬСАЦИЙ

- ОГлавный клапан
- Воздушная камера
- ЭДиафрагма
- ⑤Впускные/выпускные соединения для жидкости NPT/BSP
- **6**Болтовые крепления
- ЭВоздухоприёмное отверстие

ПРЕИМУЩЕСТВА

- Стабилизированное давление нагнетания
- Минимальная пульсация потока
- Отсутствие образования пены в жидкости.
- Отсутствие разбрызгивания жидкости
- Меньшая вибрация трубопроводов.
- Защита оборудования на длинных участках трубопроводов и защита арматуры.
- Конструкция на болтах (отсутствие утечек)
- Автоматическая подача воздуха (Активно)
- Простая установка.

АКТИВНЫЕ ДЕМПФЕРЫ ПУЛЬСАЦИЙ - СИСТЕМА ОБОЗНАЧЕНИЙ

APDXOX XXX X

Пример: APD20A - BAC - A

ДЕМПФЕР ПУЛЬСАЦИЙ	СЕКЦИЯ УПРАВЛЕНИЯ ВОЗДУХОМ	СЕКЦИЯ	ГИБКАЯ ДИАФРАГМА		
1 Тип и размер модели	2 Материал воздушной камеры	3 Соединения для жидкости	4 Материал жидкостной камеры	5 Крепежные болты	6 Материал диафрагмы
АРD20 2" = 2,6 л. макс. объем Для использования с 1 1/2" и 2" насосами АРD30 3" = 8,3 л. макс. объем Для использования с 3" насосами	Ех Сертификация АТЕХ А*= Алюминий В*= Проводящий полипропилен (черный)	СОЕДИНЕНИЯ В = BSP (Внутр. резьба) N = NPT (Внутр. резьба) 2" ФЛАНЦЕВЫЕ	P = Полипропилен (белый) $W = ПВДФ (Купаг®) (Тёмно-серый)$ EX $Cертификация АТЕХ А*= Алюминий В*= Проводящий полипропилен (черный) F*= Пластичный чугун S*= Нерж. сталь$	С= Углер. сталь S= Нерж. сталь	Стандартная A = Сантопрен® C = Хайтрел® G = Нитрил (Buna-N) V = СКФ (Витон®) Двухкомпонентная Z = ПТФЭ(Тефлон® с обратной стороной из Сантопрена)

^{* 🔂} Продукты с сертификацией АТЕХ могут использоваться во взрывоопасных зонах АТЕХ Group II 2GDx. 3" АДП доступен только в алюминиевом исполнении.

Хайтрел® является зарегистрированным товарным знаком компании DuPont, Burnoн® и Тефлон® - компании Chemours и Caнтопрен® - компании Monsanto, лицензированные для Передовых систем эластомеров (Advanced Elastomer Systems), L.P. Купаг® является зарегистрированным товарным знаком Arkema, Inc.

ОБСЛУЖИВАЕМЫЕ ОТРАСЛИ И ОБЛАСТИ ПРИМЕНЕНИЯ ДИАФРАГМЕННЫХ НАСОСОВ

НЕФТЬ И ГАЗ. НЕФТЕХИМИЯ

- Погрузка и разгрузка цистерн, емкостей и бочек.
- Интенсификация скважин кислотная обработка.
- Общие коммунальные услуги.
- Откачка из устьевых шахт.
- Ликвидация разливов нефти.
- Приготовление бурового раствора.
- Подача гликоля.
- Перекачка глинистых буровых растворов.
- Перекачка и утилизация минерализованной воды.
- Перекачка топлива.

ГОРНОЕ ДЕЛО И СТРОИТЕЛЬСТВО

- Погрузка и разгрузка цистерн и емкостей
- Перекачка горюче-смазочных материалов.
- Отвод отработанных жидкостей и воды.
- Откачка воды.
- Смешивание цементных добавок.
- Распыление штукатурки.
- Отбор проб почвы

ЦЕЛЛЮЛОЗНО-БУМАЖНАЯ ПРОМЫШЛЕННОСТЬ

- Погрузка и разгрузка цистерн, емкостей и бочек.
- Химикаты для обработки бумаги для удаления краски, хелатирования, наполнения, проклейки, каустизации, упрочнения и т. д.
- Перемещение канифоли, отбеливателя и зеленого щелока.
- Дозирование добавок.
- Химическая регенерация.
- Упаковка.
- Подготовка и перенос крахмала.
- Перенос и дозирование клеевых составов и чернил.

ПЕРЕРАБОТКА НА ХИМИЧЕСКИХ ЗАВОДАХ

- Погрузка и разгрузка цистерн, емкостей и бочек.
- Упаковка.
- Перемещение кислот, щелочей, сложных эфиров, простых эфиров, спиртов, растворителей и полимеров.
- Дозирование.
- Перемещение химических жидких отходов.

КРАСКИ И ПОКРЫТИЯ

- Погрузка и разгрузка цистерн, емкостей и бочек.
- Перемещение пигментов, растворителей и смол.
- Дозирование химических добавок
- Фильтрация краски.
- Регенерация растворителей.
- Разливочные машины.

ТЕКСТИЛЬ, КОЖА И ОДЕЖДА

- Погрузка и разгрузка цистерн, емкостей и бочек.
- Питание фильтр-прессов.
- Дозирование.
- Перенос химикатов для шлифовки, чистки, отбеливания, мерсеризации и т. д.
- Перенос красителей, пигментов, красок и т. д.
- Цветовой состав и цветное напыление.
- Перекачка измельчённой щелочной целлюлозы.
- Фильтрация.
- Отвод / распределение сточных вод

ОБСЛУЖИВАЕМЫЕ ОТРАСЛИ И ОБЛАСТИ ПРИМЕНЕНИЯ ДИАФРАГМЕННЫХ НАСОСОВ

ПРОИЗВОДСТВЕННОЕ ОБОРУДОВАНИЕ И МАШИНОСТРОЕНИЕ

- Погрузка и разгрузка цистерн, емкостей и бочек.
- Фильтрация.
- Процессы очистки.
- Обработка металлов.
- Обработка поверхности (гальванизация, цинкование и др.).

СУДОСТРОЕНИЕ

- Погрузка и разгрузка цистерн, емкостей и бочек.
- Перекачка смазочных материалов и топлива.
- Удаление просачивающейся воды
- Зачистка танкеров.
- Откачка воды.
- Осушение трюмов

ПАРКИ РЕЗЕРВУАРОВ / ПЕРЕКАЧКА

- Погрузка и разгрузка цистерн, емкостей и бочек.
- Хранение продуктов.
- Обработка в полевых условиях
- Ферментация.
- Подача технической воды для систем безразборной мойки (СІР) (растворитель / азотная кислота / гидроксид натрия).

КЕРАМИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ

- Заполнение и очистка форм.
- Перенос керамического шликера.
- Перенос лессирующей краски и глазури.
- Питание фильтр-прессов.
- Перекачка и отвод сточных вод.

ЭЛЕКТРОСТАНЦИИ (ЭНЕРГИЯ)

- Погрузка и разгрузка цистерн, емкостей и бочек.
- Перемещение теплоносителя в солнечных установках.
- Перекачка и отвод воды.
- Холодильное оборудование.

ОЧИСТКА ВОДЫ И СТОЧНЫХ ВОД

- Мобильные водные системы.
- Очистка бытовых стоков и сточных вод.
- Нейтрализация рН.
- Удаление осадка
- Орошение.
- Отбор проб.
- Разгрузка бочек для блоков впрыска химреагентов.
- Фильтрация.



ЭЛЕКТРОНИКА

- Погрузка и разгрузка цистерн, емкостей и бочек.
- Промывание кислым раствором.
- Химическая обработка электрокерамических пластин.
- Перенос кремниевой суспензии.
- Перекачка сточных вод.

